
Monoclonal antibodies (mAbs) 

are established therapeutics 

with multiple blockbuster drugs 

in oncology and inflammatory diseases 

(1–3). According to Genetic Engineering 
& Biotechnology News published on-line 

on March, 3, 2014, there were five anti-

body drugs (Humira, Remicade, Rituxan, 

Avastin, and Herceptin) and one fusion 

protein (Enbrel) among the top 10 drugs 

in 2013, and these accounted for nearly 

$50 billion in global sales. Hundreds of 

mAbs are currently under clinical develop-

ment, targeting diseases in autoimmunity, 

inflammation, cancer, infection, ophthal-

mology, and other indications (4). Beyond 

traditional mAb formats, bispecific mAbs 

and antibody-drug conjugates (ADCs) 

are major platforms of active research and 

development (4–7).

MAbs are immunoglobulins (150 kDa) 

with a typical structure shown in Figure 

1 (8). Important structural characteristics 

and physicochemical properties of mAbs 

are summarized in Table I and have been 

reviewed (9,10). Biological activity (that is, 

therapeutic efficacy) of the protein depends 

on the exact three-dimensional (3D) 

structure, which is likely affected by post-

translational modifications or degradations 

(11). In contrast with small-molecule drugs, 

which are chemically synthesized by a vari-

ety of processing routes to achieve a high 

purity product, recombinant human mAbs 

(rhMAbs) are derived from a fermentation 

process using host cells such as Chinese 

hamster ovarian (CHO) cells, followed 

by extensive purification. Because of their 

inherent heterogeneity, the quality of mAb 

therapeutics is controlled by the production 

cell line and the bioprocessing parameters 

used for each batch (7,12,13). 

Critical quality attributes (CQAs) of 

biopharmaceuticals are described by the 

International Conference on Harmoniza-

tion Guideline Q8 (R2). CQAs are a set 

of physical, chemical, biological, or micro-

biological properties or characteristics that 

should be kept within an appropriate limit, 

range, or distribution to ensure the desired 

product quality, safety, and efficacy. CQAs 

are monitored closely during each biopro-

cessing step, and can be incorporated into 

the release specifications for drug substances 

and drug products as exemplified by Table 

II (14). Important characteristics such as 

identity, purity, strength, potency, composi-

tion, and safety are obtained from multiple 

complementary analytical techniques, 

including various modes of high perfor-

mance liquid chromatography (HPLC).

Principles of quality risk management 

and assessment and quality by design 

(QbD) serve as the foundation for current 

regulatory expectations for process develop-

ment (15,16). As an integral part of QbD, 

assessment of CQAs could be based on 

their impacts in four categories: bioactiv-

ity, pharmacokinetics–pharmacodynam-

ics (PK-PD), immunogenicity, and safety. 

Typical mAb CQAs include size, charge, 

oxidation, aggregation, glycosylation, and 

cysteine variants. Other CQAs include 

process impurities such as residual levels of 

host-cell DNAs and proteins, antibiotics, as 

well as contaminants such as mycoplasma, 

viruses, or proteases (13,15).

Analytical methodologies used for qual-

ity control (QC) and characterization are 

the cornerstones of mAb drug development 

processes. A well-designed quality control 

system includes procedure controls (in-

process monitoring or controls), raw material 

or excipient controls, characterization testing, 
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stability testing, and final lot release testing 

and shipping. Regulatory guidances define 

the requirements of QC practices, which 

are applied to characterization and method 

validation (17). An effective QC strategy 

should provide assurance that products are 

safe, have consistent quality, and include 

standard procedures to guard against unex-

pected incidents that impact drug quality. In 

the end, the QC-released mAbs must meet 

predefined specifications acceptable to regu-

latory agencies (14). 

To monitor the CQAs of heterogeneous 

mAb products, multiple analytical tech-

niques are used. These include chromatog-

raphy (HPLC), electrophoresis (capillary gel 

electrophoresis, capillary isoelectric focusing, 

sodium dodecyl sulfate polyacrylamide gel 

electrophoresis [SDS PAGE]), spectroscopy 

(mass spectrometry [MS], UV–vis spectro-

photometry, nuclear magnetic resonance 

[NMR], infrared [IR] spectroscopy, circular 

dichroism), and other techniques (multiple-

angle laser scattering, differential scanning 

calorimetry, enzyme-linked immunosorbent 

assay [ELISA], microbial testing, steril-

ity testing, and binding and functional 

bioassays) (13,14,18,19). The use of HPLC 

(11,20–23) and ultrahigh-pressure liquid 

chromatography (UHPLC) (24–30) for 

the analysis of proteins and peptides has 

been reviewed in many books and journal 

articles (11,20,22–24,26,30,31). In this 

installment, we focus our discussion on the 

various modes of HPLC used for extended 

characterization, lot release testing, and sta-

bility testing of intact therapeutic mAbs and 

their variant and degradant forms. Selected 

examples and reviews of key references 

are used to illustrate the best practices and 

recent developments in mAb analyses. 

Table I: Important structural characteristics and physicochemical properties of mAbs

Structural  

characterization

Amino acid sequence; amino acid composition; terminal amino acid sequence; peptide map; sulfhydryl groups 

and disulfide bridges; carbohydrate structure 

Physicochemical 

properties

Molecular weight or size; isoform pattern; extinction coefficient (or molar absorptivity); electrophoretic pat-

terns; liquid chromatographic patterns; spectroscopic profiles

Table II: Typical release tests used for mAb therapeutic products. Reprinted with permission from reference 14.   

Test Purpose Specification Lot 1 Lot 2 Lot 3 Lot 4 Lot 5

Protein concentration by UV 

absorbance at 280 nm (mg/mL)
Quantity 50–60 55 54 55 55 56

Percent purity by high- 

performance SEC
Purity (size) ≥98.0 99.5 99.1 99.7 99.8 99.5

Ion-exchange purity Purity (charge) ≥95.0 98.0 97.5 98.5 100.0 98.9

Percent deamidation by  

percent IEC
Purity (charge) ≤5.0 2.0 2.2 1.5 1.0 1.1

Capillary zone electrophoresis Identity Conforms to standard Yes Yes Yes Yes Yes

Peptide mapping Identity Conforms to standard Yes Yes Yes Yes Yes

Antigen binding assay or 

other appropriate
Potency 10–120% 90 95 92 101 105

Host cell proteins (ng/mg) Impurities ≤100 10 2 5 2 5

Residual DNA (pg/mg) Impurities ≤20 2 2 3 2 2

Endotoxin (EU/mg) Impurities ≤0.1 0.01 0.01 0.02 0.01 0.02

pH General 6–6.5 6.2 6.2 6.2 6.2 6.2

Volume (mL) General ≥15 15 15 15 15 15

Appearance General Colorless Colorless Colorless Colorless Colorless Colorless

Antigen-
binding 
site

Antigen

(Fab′)2

Heavy chain

5 nm

F

Light 
chain

V
H
 domain

V
L
 domain

Figure 1: Structure of a typical antibody molecule with two identical heavy chains 
and light chains and antigen-binding sites. VH and VL are the variable domains in the 
heavy and light chains. The molecules can be cleaved enzymatically into a lower Fc 
and two Fab fragments. Adapted with permission from reference 8.
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Size-Exclusion Chromatography 

Size-exclusion chromatography (SEC) 

separates molecules based on molecule 

size by selectively excluding them from 

an inert porous matrix of controlled pore 

sizes (32). SEC is typically performed under 

nondenaturing operating conditions at 

room temperatures with isocratic mobile 

phases containing 0.2 M to 0.5 M sodium 

chloride or potassium chloride and buffered 

to approximately pH 6. Typical stationary 

phases are silica- or polymer-based supports 

with a hydrophilic coating or bonded layer. 

The Tosoh TSKgel SEC column is widely 

used in the biopharmaceutical industry for 

mAbs analyses and has been on the market 

since 1987 (33). 

The recent introduction of ultrahigh-per-

formance SEC columns packed with small 

particles provides an opportunity for short-

ened analysis time and better peak resolu-

tion. For example, Jeong and colleagues (31) 

demonstrated a 5-min separation of an Fab 

dimer and monomer on a 1.7-µm bridged-

ethyl hybrid (BEH) column with improved 

peak resolution in comparison to an existing 

30-min standard HPLC separation (31). 

This fast SEC method has been qualified for 

robustness, accuracy, and precision. Died-

erich and colleagues (34) demonstrated that 

an interlaced injection technique that could 

further speed up the decreased SEC analysis 

time. By comparison of three SEC columns 

(TSKgel 3000 SWxl, Zenix SEC-250 

[Sepax Technologies], and Acquity UPLC 

BEH200 [Waters]) in terms of throughput, 

resolution, and precision, they indicated that 

similar profiles were obtained (Figure 2) and 

that the Acquity UPLC BEH200 column 

has the highest resolution, whereas the Zenix 

column offers an economical alternative to 

the TSKgel column. This UHPLC method 

has a 6-min cycle time for single injections 

versus <2-min cycle time in the interlace 

format (staggered injections).

High-molecular-weight species (HMWS) 

such as aggregates in mAbs have been cor-

related with immunogenicity, a high-impact 

safety risk (35). SEC is a key technique 

to monitor HMWS as well as other low-

molecular-weight species (LMWS). Arakawa 

and colleagues (36) identified several caveats 

when implementing SEC, such as its low 

resolution and the potential of nonspecific 

adsorption on the column, which leads to 

inaccurate molecular mass estimation. A 

careful selection of SEC method parameters 

is therefore needed to obtain useful data that 

correlate well with results from analytical 

ultracentrifugation, multiple-angle light scat-

tering (MALS), or MS. 

In a critical evaluation of ultrahigh-per-

formance SEC separations for mAbs aggre-

gates, Fekete and colleagues (24)observed 

high plate counts using sub-2-µm columns, 

but comparatively higher HMWS values 

of 7–10% versus approximately 4% with 

conventional HPLC. Although routine 

SEC analysis does not require high tem-

peratures, these results suggested the 

possibility of aggregation artifacts formed 

during the UHPLC analysis at high tem-

peratures and pressure. Our laboratories 

are conducting further investigation of this 

aspect of ultrahigh-performance SEC, and 

results will be reported elsewhere.

Ion-Exchange Chromatography 

Charge-based separation analyses are typi-

cally included in the release and stability 

specifications for QC and comparability 

studies to support post-approval process 

changes. Ion-exchange chromatography 

(IEC) is a key purity assay for mAb charge 

variants, that are often functionally active 

species (37). Polymer-based columns, the 

most widely used for IEC analysis, are 

coated with a hydrophilic layer functional-

ized with ion-exchange groups such as 

carboxylate, sulfonate, amino, and quater-

nary amine, and elution is accomplished 

with salt or pH gradients. Although their 

numbers are still limited, the increasing 

availability of sub-3- and sub-2-µm IEC 

columns is beginning to impact the perfor-

mance of these separations (38).
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Figure 2: (a) Overlay of single-injection chromatograms of the mAb sample (1.0 g/L) 
analyzed on three different SEC columns. (b) For comparability, elution volumes were 
normalized to column void volumes. Columns: 150 mm × 4.6 mm, 200-Å, 1.7-μm Acquity 
UPLC BEH200 SEC: 250 mm × 4.6 mm, 300-Å, 3-μm Zenix SEC-250; 300 mm × 7.8 mm, 
250-Å, 5-μm TSKgel 3000 SWxl. Mobile phase: 0.2 M potassium phosphate buffer at pH 
6.2, containing 0.25 M potassium chloride. Adapted with permission from reference 34.

Figure 3: Cation-exchange analysis of mAb A samples under various conditions: 
(a) unstressed control, (b) thermally stressed at 40 °C for four weeks at pH 5.3, and 
(c) mAb A treated with pH 8.5. The arrow in (b) points to a new degraded peak 
unique to thermally stressed samples and termed “AV2B” in the paper. Adapted with 
permission from reference 44.
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Approximately 20% of the amino acid 

residues in a typical human IgG1 platform 

molecule are charged in nature. Post-trans-

lational modifications or degradations of 

these charged residues create variant forms, 

where either a charged site becomes removed 

(that is, Lys epsilon amine loss by glycation, 

amino-terminal free primary amine loss by 

cyclization, carboxyl-terminal Lys cleaved), 

or a new charged site is produced (for 

example, Asn deamidation into Asp, glycan 

sialylation). Alterations in charge-based con-

tent of mAb variants impact interaction with 

IEC ligands, resulting in different retention 

profiles. An IEC charge variant method can 

be used analytically for monitoring changes 

to the product profile, or preparatively as an 

isolation technique of new variants for fur-

ther characterization or identification.  

An IEC charge variant profile for mAbs 

is typically generated from a negatively 

charged carboxylate or sulfonate cation-

exchange column. Note that immuno-

globulin G (IgG) molecules generally are 

basic in nature, with an isoelectric point at 

pI > 7 in a near-neutral pH buffer mobile 

phase system. An ion-exchange profile ide-

ally presents a predominant main peak with 

minor flanking regions of acidic and basic 

variants eluting before or after the main 

peak, respectively (39). IEC profiles of mAb 

charge variant forms are typically heteroge-

neous because of multiple modifications on 

many sites throughout the molecule, often 

resulting in a series of unresolved peaks, 

particularly on the acidic side. In contrast, 

modifications to the charged termini resi-

dues are often well resolved from each other 

and the main peak.

A comprehensive overview of charge vari-

ant modifications and their impact to IEC 

profile shifts with an extended focus on 

deamidation and isomerization degradation 

were documented by Vlasak and Ionescu 

(40). In a 2001 paper, Harris and colleagues 

(19) demonstrated the IEC separation, isola-

tion, and subsequent characterization for 

six different charge variants of the rhuMAb 

HER2 IgG1 molecule. Strikingly well 

resolved variants, which differed from the 

main-peak intact IgG1 native form by a sin-

gle Asn deamidation (negative charge added, 

material shifted to acidic) or Asp isomeri-

zation (charge preserved, material shifted 

to basic), illustrated the power of an IEC 

separation. Chumsae and colleagues (41) 

profiled a typical mAb IEC separation from 

which an unusual arginine modification by 

methylglyoxal was identified by an acidic 

shift. Removal of positive charges resulted in 

molecules that were significantly shifted into 

the acidic region, and seven charge-modified 

arginine residues, which were located in 

accessible, flexible complementarity deter-

mining region (CDR) sequences, were iden-

tified from isolated fractions.  

A frequently used strategy to address the 

poorly resolved charged variants utilizes a 

digestion of the mAb molecule with papain 

before IEC profiling. Creation of smaller 

Fab and Fc portions reduces the complexity 

generated by multiple modifications across 

the intact heterodimeric molecule, and 

often results in cleaner profiles with more 

distinct peaks. An interesting example from 

Moorhouse and colleagues (42) illustrated 

this approach, where Fc C-terminal lysine 

variants can be separately assessed from Fab 

amino-terminal glutamine cyclized vari-

ant forms. Individual terminal species with 

charge differences were fully resolved and 
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sequentially eluted in order of increasing pI: 

Fc + 0 C-terminal K, Fc + 1K, Fc + 2K, Fab 

+ 2 N-terminal pyroglutamates (pE), Fab + 

1pE + 1 glutamine (Q), Fab + 2Q.

Pace and colleagues (43) applied this 

same fragmentation IEC strategy to gener-

ate independent Fab and Fc deamidation 

rates in stability studies to assess and 

improve product shelf life. Kinetic degra-

dation rates were determined based on the 

level of acidic charge variants in each frag-

ment in response to varying buffer com-

ponents, pH, and column temperature. 

Susceptible deamidation residues in the 

CDR-containing FAb portion could thus 

be specifically stabilized to extend shelf 

life. Zhang and colleagues (44) used IEC 

to monitor a previously unidentified acidic 

variant form that occurs in the Fc domain 

under thermal stress conditions (Figure 

3). Characterization analyses of the acidic 

modification identified Asn-330 as an 

unexpected site of deamidation and isom-

erization, in the Val-Ser-Asn-Lys sequence. 

IEC appears to be able to effectively moni-

tor Fc Asn-330 deamidation and isomeri-

zation, a major degradation pathway under 

thermal stress conditions.

Reversed-Phase  

Liquid Chromatography 

Reversed-phase liquid chromatography (LC) 

analysis of mAbs has multiple applications 

across all structural levels, from full-sized 

intact molecules to Fab and Fc fragment 

molecules and reduced heavy- and light-

chain species, and peptide maps generated 

by proteolytic digestion (11,21,28,45). 

The broad utility of reversed-phase LC is 

because of its well-studied hydrophobic sep-

aration mechanism, the availability of very 

efficient reversed-phase LC columns packed 

with small-particle, nonporous, fully porous, 

or superficially porous (SPP) materials, and 

the use of mobile phases compatible with 

MS for peak identification and structure 

elucidation (20,45,46). 

Many researchers have used reversed-

phase LC to exploit these hydrophobic 

differences in mAb variant forms at the 

intact or large-fragment levels to provide a 

quick assessment of process and formulation 

development samples. Identified variant 

forms that exhibited altered hydrophobic-

ity (which controls reversed-phase LC 

retention) include methionine oxidation, 

glycosylation, disulfide-free thiol status, and 

amino-terminal cyclization. Peptide map-

ping by reversed-phase LC–MS is the basis 

for de novo sequencing, identity assay for lot 

release testing, and detailed characterization 

or identification of variant forms (45). 

Reversed-phase LC of proteins and pep-

tides has been an area of intensive research 

for several decades. The fundamentals 

and separation mechanism are generally 

understood and well-documented (11,20,23). 

Recent column developments specifically for 

mAbs have used approaches such as bonded 

phases with low silanophilic silica for better 

peak shape, short alkyl chain length ligands 

to reduce retention and adsorption, non-

porous, superficially porous, or wide-pore 

materials to improve mass transfer, and sub-

3-µm or sub-2-µm particles for enhanced 

efficiencies (20,23,26,31,46).

Fekete and colleagues (47) explored 

the impact of mobile phase and column 

temperature on two new wide-pore pack-

ing materials (1.7-µm fully porous and 

3.6-µm core–shell particles) on the stability 

and recovery of commercially manufac-

tured IgG molecules (intact IgGs and 

fragments: heavy chain, Fc, and Fab). To 
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Figure 4: Reversed-phase LC profiles for the intact mAb A with buried unpaired 
cysteines using three different columns: (a) 150 mm × 4.6 mm, 3-µm Agilent (Varian) 
diphenyl; (b) Zorbax SB-C8; and (c) Agilent (Varian) PLRP-S column; mobile-phase 
A: 0.1% trifluoroacetic acid in water; mobile-phase B: 0.1% trifluoroacetic acid in 
acetonitrile; gradient: 36–45% B in 18 min; flow rate: 1 mL/min; temperature: 75 °C; 
detection: UV absorbance at 280 nm. Adapted with permission from reference 51.
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mitigate strong secondary ionic interac-

tions, the authors operated the column at 

high temperatures (80–90 °C), along with 

incorporating small amounts (1–3%) of 

a protic solvent in the mobile phase (such 

as n-butanol) to enhance peak shape and 

recovery. In a separate paper, the same 

research group demonstrated the use of a 

coupled-column approach to enhance reso-

lution of mAb separations (30). 

An earlier study published by Dillon 

and colleagues (48) described the use of 

reversed-phase LC–MS to screen intact 

mAb for heterogeneity associated with post-

translational modifications (that is, glyco-

sylation) and stability degradations (clipped 

species). In addition, conformational iso-

forms were detected and attributed to disul-

fide linkage heterogeneity for an IgG2 (49). 

Rehder and colleagues (50) applied similar 

optimization of reversed-phase LC–MS 

methods to analyze reduced and alkylated 

IgG light- and heavy-chain (LC and HC) 

molecules and for monitoring intact glycan 

distribution (G0, G1, G2, Man5) and 

amino-terminal cyclizations.
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Reversed-phase LC analysis of intact mAb also provided an 

unexpected separation of free thiol variant forms as demonstrated 

by Zhang and colleagues (51). Under the denaturing conditions of 

the reversed-phase LC environment (high temperature, low pH, and 

organic solvent), variants containing unpaired intrachain disulfides 

were completely separated from the expected, disulfide-bonded 

paired cysteine mAb (Figure 4). Free thiol variant forms presented as 

more hydrophobic than completely disulfide-bonded material, and 

were observed for both the intact mAb and the FAb fragment. The 

separated minor peaks, which could be completely converted back 

into the main peak by CuSO4 treatment, were characterized as the 

unbonded free thiol form of the Cys22–Cys96 disulfide pair located 

in the VH region.  

Affinity Chromatography

Affinity chromatography (52) utilizes a highly specific, often bio-

logically based binding interaction to capture specific molecules. 

Antibody molecules themselves frequently serve as highly selective 

immobilized ligands for isolation of analytes of interest from com-

plex matrices. Common stationary phases in affinity chromatog-

raphy are protein A or protein G for IgG and boronate affinity for 

glycated proteins. Affinity chromatography is routinely used during 

the purification process for therapeutic mAb production. IgG affin-

ity interactions with protein A or protein G are exploited both at 

large-scale for an initial high-capacity chromatographic separation of 

the product from host cell materials, and at small-scale for fast, high-

throughput analysis for product titer (12). This high-affinity interac-

tion occurs within the Fc CH2–CH3 regions, and after extraneous, 

nonretained host cell materials are washed through. Isolated IgG is 

typically eluted with an acidic pH step-gradient wash. 

Interestingly, affinity chromatography has been used to further 

separate Fc region oxidation variants by applying linear gradients 

for elution. Loew and colleagues (53) explored the impact of 

oxidation at two highly conserved methionine residues, Met-252 

and Met-428, which are located in the Fc CH2–CH3 regions, 

and are directly involved in the binding interaction with protein 

A. Schlothauer and colleagues (54) exploited IgG affinity for the 

neonatal Fc receptor protein (FcRn), a physiologically functional 

interaction with Fc CH2–CH3 regions. FcRn affinity columns, 

prepared in-laboratory via biotinylated receptor material coupled 

to streptavidin-sepharose, were operated under physiological pH 

gradient conditions to elute bound IgG or Fc material. 

Another important application of affinity chromatography is 

boronate chromatography for antibody glycation characterization. 

Quan and colleagues (55) used an optimized separation that con-

tained hydroxylated shielding reagents in the mobile phase when 

assaying basic IgG molecules. Shielded boronate affinity chroma-

tography can be effectively used to quantify, isolate, and character-

ize glycated IgG1.

Hydrophobic Interaction Chromatography 

Hydrophobic interaction chromatography (HIC) (56) is a separa-

tion mode in which the molecules in high-salt mobile phase envi-

ronments interact hydrophobically with nonpolar stationary phases 

(for example, hydrophobic ligand bonded to a polymer or a silica 

support with a hydrophilic outer layer). Common mobile phases are 

1–2 M ammonium sulfate buffered at ~pH 6. HIC is an “orthogo-

nal” technique (with very different selectivity) to reversed-phase LC, 

IEC, or SEC and is useful for characterization of intact and large 

fragment IgG molecules (56). HIC uses an initial matrix of high-

concentration water-structuring salt to expose IgG hydrophobic 

regions, which can then interact with an alkyl- or phenyl-function-

alized stationary phase. A decreasing salt concentration gradient is 

used to elute the various IgG forms based on relative hydropho-

bicity. HIC is generally applicable for initial broad fractionation 

of complex protein solutions (for example, whole cell broths and 

plasma). However, analytical scientists can apply this technique to 

effect separations on highly purified IgG product with very subtle 

modifications. HIC is also a reference technique for ADC drugs for 

the determination of antibody–drug ratio (57).

HIC methodologies have provided very effective separations 

for monitoring mAb aspartic acid isomerization and thiol vari-

ants. Cacia and colleagues (58) used an analytical TSK-Butyl 

(Tosoh) column to separate seven hydrophobically distinct spe-

cies, related to aspartic acid isomerization variants of an intact 

IgG1 in a 14-min method. Wakankar and colleagues (59) further 

utilized an optimized HIC method to generate stability data and 

degradation rates for Fab aspartic acid isomerization on the same 

IgG1 molecule. The resulting profile had additional hydrophobic 

species separated, which were identified as the Fab intact intra-

chain disulfide and free thiol forms at heavy chain Cys22–Cys29. 

Harris and colleagues (18) documented the final HIC separa-

tion of six Fab-associated peaks: in order of increasing retention 

and hydrophobicity, LC-Asp32/HC-Cys22-Cys96 disulfide 

(native material), LC-Asp32/HC-Cys22-Cys96 free thiols, LC-

isoAsp32/HC-Cys22-Cys96 disulfide, LC-isoAsp32/HC-Cys22-
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Cys96 free thiols, LC-Succinimide32/

HC-Cys22-Cys96 disulfide, LC-succin-

imide32/HC-Cys22-Cys96 free thiols.

Likewise, Dick and colleagues (60) used 

HIC analysis of an intact mAb for accel-

erated stability studies by temperature-

induced degradation. Isomerization at 

a heavy-chain CDR2 aspartic acid was 

quantitatively monitored to establish deg-

radation rates and determine the impact of 

formulation buffer components. Valliere-

Douglass and colleagues (61) used a modi-

fied HIC methodology to improve recov-

ery of an IgG2 molecule used in stability 

studies, by adding acetonitrile to a low pH 

(5.2) mobile phase and replacing ammo-

nium sulfate with ammonium acetate as 

the elution salt. 

HIC is an important method to deter-

mine an overall drug-to-antibody ratio. 

Wakankar and colleagues used HIC with 

low concentrations of acetonitrile added to 

the low-salt mobile phase to help ensure full 

elution of antibody-drug conjugates (ADCs) 

loaded with higher-order drug levels. Using 

a butyl-nonporous stationary phase, five spe-

cies of an intact IgG linked with an increas-

ing number of a small-molecule drugs (zero, 

two, four, six, and eight) were baseline 

resolved in less than 15 min (Figure 5) (57).  

The wide applications of HIC for anti-

body analysis were further demonstrated 

by Valliere-Douglass and colleagues (62), 

who developed a variety of finely tuned, 

optimized HIC separations for intact IgG, 

Fab, and Fc fragment species. Multiple 

aspartate isomerization-based intermediates 

and isoforms in CDRs were fully separated 

for different IgG molecules. After peaks 

were characterized, HIC analysis proved to 

be a superior monitoring method for these 

degradation changes, as well as for isolat-

ing material for functional assessment. Fc 

fragment variant species were also well 

separated, including oxidized methionine 

forms and processed C-terminal forms such 

as lysine removal and proline amidation. 

Finally, HIC provided an efficient separa-

tion of size-based variant forms, particularly 

for isolating and enriching clipped species 

for further characterization.

Mixed-Mode Chromatography 

Mixed-mode chromatography uses multiple 

forms of interactions between analytes and 

the stationary phase (for example, IEC, HIC, 

SEC) (63). Mixed-mode chromatography 

offers unique selectivity for some variants 

that are difficult to separate by other modes 

of chromatography, and has been success-

fully utilized for large-scale protein purifica-

tion in biopharmaceutical manufacturing 

(63). Unlike reversed-phase LC that dena-

tures proteins, mixed-mode chromatography 

can be applied to isolate mAbs for further 

biological characterization.

The mixed-mode phenomenon in SEC 

is a nuance that has been exploited for 

the separation of oxidized antibodies. By 

coupling two TSK-Gel (Tosoh) columns in 

series, Yang and colleagues (64) observed 

a pre-peak in SEC. Further characteriza-

tion of the pre-peak revealed the oxidation 

of trypotophan residues (Trp-103) on the 

heavy chain of the IgG2. Wong and col-

leagues (65) exploited to separate oxidation 

variants by running ultrahigh-performance 

SEC columns under moderate HIC condi-

tions, which separated an IgG2 into size-

related variants, and additionally resolved 

a monomer pre-peak from the monomer 

main peak. The pre-peak was confirmed 

by orthogonal characterization techniques 

as an oxidized Trp-104 IgG monomer, 
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which was 40–50% less active because of 

the location of Trp-104 in the CDR. The 

IgG tryptophan oxidation that was gener-

ated under the stressed condition can be 

clearly monitored by this mixed-mode 

method. 

Hydrophilic-Interaction  

Chromatography 

Hydrophilic-interaction chromatography 

(HILIC) (56,66,67) provides enhanced 

retention and selectivity for separations of 

polar components. The stationary phases 

used include bare silica, and silica bonded 

with amide, amine, cyano, and diol polar 

functional groups. More-complex silica 

derivatizations produce anion-exchange, 

cation-exchange, zwitterionic, and mixed-

mode stationary phases that can be oper-

ated in HILIC mode with appropriate 

mobile phases. Typical mobile phases are 

initial high concentrations of polar organic 

solvents (mostly aprotic but sometimes 

protic) that are water-miscible (for example, 

acetonitrile, alcohols) with aqueous buffers 

for pH and ionic strength control.

HILIC has been applied to mAb 

carbohydrate analysis, separating these 

highly polar glycans compounds in a 

MS-compatible mobile phase. Ahn and 

colleagues (68) developed a HILIC sepa-

ration of fluorescently labeled N-linked 

glycan structures released from human 

IgG by using UHPLC. Baseline separa-

tion was achieved within a reasonable 

time (<1 h) for the expected neutral and 

charged glycans, including many struc-

tural isomers. 

Peptide mapping by HILIC provides 

complementary information to typical 

reversed-phase LC maps. Zhu and col-

leagues (69) applied HILIC peptide map-

ping with unbonded silica to a highly glyco-

sylated therapeutic protein (erythropoietin 

[EPO]). Although EPO is not a mAb, this 

work demonstrated the general applicabil-

ity of orthogonal selectivity, both for very 

hydrophilic peptides that are not well 

retained by reversed-phase LC. 

The use of HILIC for intact protein 

analysis remains limited, primarily because 

of protein incompatibility issues in the 

initial mobile phase. Many intact proteins 

including IgGs, become either denatured or 

are not soluble in initial conditions. Dena-

tured intact proteins are often not recovered 

in an active form, or remain irreversibly 

adsorbed to the HILIC stationary phase. 

Tetaz and colleagues (66) studied HILIC 

applications for a set of intact, nonaqueous 

soluble proteins that are lipophilic or hydro-

phobic membrane-associated in nature, and 

demonstrated glycosylation-based, isoform 

separations of intact proteins.

Challenges and Opportunities  

for Future Development 

The emerging antibody formats such as 

ADCs have created new challenges for 

separation scientists. The complexity of an 

antibody coupled with a linker and a cyto-

toxic drug creates greater heterogeneity in an 

ADC molecule, and typically does not yield 

discrete peaks in traditional IEC for mAbs 

with and without the bound drugs (57). 

Similarly, bispecific antibodies based on 

molecules with two different Fabs contain-

ing two distinctive binding sites for two dif-

ferent antigens, comprise another platform 

under intense development (5). The produc-

tion and assembly of bispecific mAbs are 

more demanding on separation techniques 

for greater resolution of numerous variants 

of the desired forms.

To address the increasing need for 

higher resolution and selectivity in mAbs 

characterization, academic research labs 

have developed new materials that perform 

beyond the traditional limitations for 

large molecule chromatography. A notable 

example is an ultra-efficient chromatog-

raphy based on submicrometer colloidal 

silica particles developed by Professor Mary 

Wirth’s group at Purdue University (70). 

They demonstrated that a novel “slip flow” 

phenomenon could enable a very high effi-

ciency separation of antibody aggregates in 

40 s (Figure 6). The separation can be car-

ried out at room temperature in contrast to 

typical reversed-phase-UHPLC conducted 

at higher column temperatures (70–80 °C), 

avoiding potential on-column degradation. 

Multidimensional LC has been suc-

cessful for increasing peak capacity for 

complex samples and is extensively used in 

proteomics research (71). For mAbs charac-

terization, multidimensional LC techniques 

can reveal variants undetected in just one 

mode of separation and provide more in-

depth understanding of the molecules. Since 

minor variants are present at low abundance 

and often are eluted near other peaks, an 

effective enrichment technique such as 

displacement chromatography could be 

initially applied (39), coupled with a second 

dimension to achieve better resolution of 

minor components.  

Summary and Conclusion

Monoclonal antibody therapeutics require 

a wide array of HPLC modes for charac-

terization and quality control applications 

where CQAs such as charge, size, oxida-

tion, cysteine forms, and glycan variants 

are monitored in process development. 

These complementary techniques are 

used to reveal minor changes to the mAb 

molecules or for the determination of low 

levels of aggregates, variants, and impuri-

ties. Judicious applications of these HPLC 

separation modes are vital to a more 

thorough understanding of these complex 

biopharmaceuticals and their associated 

manufacturing processes that can impact 

0.0

Silica colloidal crystal,
room temperature

UHPLC column,
80 °C

0.2 0.4 0.6 0.8 1.0 0 2 4 6 8

Time (min)

(a) (b)

Time (min)

Figure 6: Separation of a labeled monoclonal antiprostate specific antigen and 
its aggregate using “slip flow” ultra-efficient chromatography: (a) Silica colloidal 
crystal: 21 mm × 0.075 mm capillary column packed with 0.47 μm colloidal silica 
bonded with C4 ligand; mobile phase: 40% acetonitrile in 0.1% trifluoroacetic acid; 
temperature: ambient. (b) Commercial column, 50 mm × 2.1 mm column packed with 
1.7-μm C4 material; temperature: 80 °C. Adapted with permission from reference 71.
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final product quality. Robust and high-

performance HPLC techniques are the 

cornerstones for mAb development and 

production, pivotal in assuring the safety 

and efficacy of these targeted therapeutics 

for many serious diseases.
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